手机浏览器扫描二维码访问
由于知道一个平面上曲线的导数,就是对应点上的斜率。
那么在曲面中,是不是该有一个切曲面。
而在曲体里,会有切体。
如何去用数学工具去研究呢?
曲面中,只有一个x变量,出现的就是对应的直线。
而曲面中,需要一个平面的话,就需要两个直线去确定一个平面。
而曲面是在x、y两个变量中的变化,曲面方程的求导只能按照直线求导的方式来。
那先去求x的导数,还是先求y的导数?这个先后如果求的导数不同话,那就说明有一种方向不同的连续性的东西。
当然这也是以后,柯西准则,去判断曲面连续性的东西。
而这里,去对曲面甚至曲体甚至曲高维体求导,就用雅可比行列式。
雅可比行列式通常称为雅可比式,它是以n个n元函数的偏导数为元素的行列式。
事实上,在函数都连续可微(即偏导数都连续)的前提之下,它就是函数组的微分形式下的系数矩阵(即雅可比矩阵)的行列式。
若因变量对自变量连续可微,而自变量对新变量连续可微,则因变量也对新变量连续可微。
这可用行列式的乘法法则和偏导数的连锁法则直接验证。
也类似于导数的连锁法则。
偏导数的连锁法则也有类似的公式;这常用于重积分的计算中。
雅可比行列式求导,两个变量之间是垂直的,但是也能反应出斜向的一些曲率变化力。
对雅可比矩阵的理解就是对多变量向量的求导,跟y=f(x)代表曲线切线一样,雅可比矩阵代表了一个高维度的切空间,有了这个切空间,就可以通过设定初值迭代出无法得到解析解的微分方程组的数值解。比如三体、多摆等问题~
雅可比在想,如果是任意的高维表面,我在这个表面上,开始做出对应这个维度的切体,这个切体沿着这个高维面滑动,滑动之时,这个切体会发生变化。
可以研究这个切体的变化来推敲这个高维物体的性质。
这样的模型很难感悟,需要感悟这些数字,因为光是数字,很难形成图形,而这些切体也难于用大脑想象,同时切体中的形状也会相互交错。
喜欢数学心请大家收藏:()数学心
摊牌了,我爹是绝顶高手! 暗无 我的徒弟不对劲 我一枪一剑杀穿大陆 宗门全是美强惨,小师妹是真疯批 重生在宝可梦,我的后台超硬 新人驾到 哦豁!虐文炮灰不干了! 快穿之炮灰得偿所愿 至尊战皇 农夫是概念神?三叶草了解一下! 大明:开局气疯朱元璋,死不登基 玄灵界都知道我柔弱可怜但能打 混迹娱乐圈的日子 穿到八零,我自带锦鲤系统! 在下潘凤,字无双 穿成商户女摆烂,竟然还要逃难! 译文欣赏:博伽瓦谭 国运:拥有多重身份的我很合理吧 永恒大陆之命运
高手从来都是寂寞的,可是我却想做一个逍遥高手京城世家子弟楚修为了逃避家族逼婚,远走他乡,哪里想到却因此卷入了更多的桃花之中各色美女与他纠缠不清,就连那霸道的未婚妻也是不远千里追来面对这等桃色劫难,楚修只有一个念头我想回家!各位书友要是觉得校园逍遥高手还不错的话请不要忘记向您...
一个无父无母的孤儿,一个被最有钱的女人领养的孤儿可是自卑彷徨的他却喜欢上了跟自己身份截然不同的人。可惜他却在跟最有钱的女董事长发生不能说的秘密之后一切都变了。各色各样的大小美人纷扰而至,围绕在他的身边!成熟美艳,清纯可爱,性感妩媚,柔情万千最后的最后,他凭借着自己的能力,在那多少美人美妇的陪伴之下,在这一片弱肉强食的世界之中创下了一个伟大的奇迹!...
他是学生是老师是医生更是深藏不露的贴身保镖。QQ群583880154...
流氓少爷实际上就是流氓少爷尘世游只不过作者名字不同,但至尊包不同和至尊风流就是同一个人,流氓少爷已经完本了,但两本书基本是一样的,只是章节数字不同而以。所以就同时把两书的章节数字标出此书记录S省富家少爷夏丰银玩转都市,风流逍遥的过程,全书以YY为主,以使读者浴血沸腾为目标,那些自命清高者可以不看!没有最淫荡,只有更淫荡!要想成淫才,快到此处来...
养父母待她如珠如宝,她却心心念念的想要回到抛弃她待她如糠如草的亲生父母身边儿,犯蠢的后果就是养母死不瞑目,养父断绝来往,她,最终惨死车轮下重来一次,她要待养父母如珠如宝,待亲生父母如糠如草!至于抢她一切的那个亲姐姐,呵,你以为还有机会吗?哎哎哎,那个兵哥哥,我已经定亲了,你咋能硬抢?!哎哎哎...
2o19云起华语文学征文大赛参赛作品胖喵儿死了,被一根鸡骨头卡死了!重生在了一个生了九个孙儿,盼孙女盼的眼睛都红了的阮家,瞬间成了阮家上下三代的团宠!胖喵儿笑眯眯,觉得这有奶奶宠,爸妈爱,哥哥护的小日子,真叫一个美滋滋哟。当然,如果没有某只躲在角落里,眼睛里放着绿光,死死盯着她的‘大灰狼’,那就更好了!某只‘大灰狼’冷笑一声上辈子没吃到,这辈子总要吃到的!胖喵儿へノ...