手机浏览器扫描二维码访问
Stirling数的概念由J.Stirling于1730年提出,并在他的着作《MethodousDifferentialis》中首次使用。
1958年,Riordan首先应用s(n,k)和S(n,k)来分别表示第一类Stirling数和第二类Stirling数。
1770年,L.Lagrenge推导出了第一类Stirling数的递推关系和数论的性质。
而P.S.Lapace和A.Cauchy则在第二类Stirling数的逼近理论上取得了一些成果。
1933年,Ch.Jordan在他的一篇论文中对Stirling数做了彻底的阐述,并给出了一些Stirling数的重要性质。
第一类Stirling数表示将n个不同元素构成m个圆排列的数目。
第一类Stirling除了表示可以表示升阶函数和降阶函数的系数之外还可以应用到一些实际问题上。例如很经典的解锁仓库问题。
问题说明如下:有n个仓库,每个仓库有两把钥匙,共2n把钥匙。同时又有n位官员。问如何放置钥匙使得所有官员都能够打开所有仓库?(只考虑钥匙怎么放到仓库中,而不考虑官员拿哪把钥匙。)那如果官员分成m个不同的部,部中的官员数量和管理的仓库数量一致。那么有多少方案使得,同部的所有官员可以打开所有本部管理的仓库,而无法打开其他部管理的仓库?(同样只考虑钥匙的放置。)
第一问很经典,就是打开将钥匙放入仓库构成一个环:1号仓库放2号钥匙,2号仓库放3号钥匙……n号仓库放1号钥匙。这种情况相当于钥匙和仓库编号构成一个圆排列方案数是(n-1)!种。
而第二问就对应的将n个元素分成m个圆排列,方案数就是第一类无符号Stirling数Su(n,m)。如要要考虑官员的情况,只需再乘上n!即可。
第二类Stirling数主要是用于解决组合数学中的几类放球模型。主要是针对于球之前有区别的放球模型:
n个不同的球,放入m个无区别的盒子,不允许盒子为空。
喜欢数学心请大家收藏:()数学心
混迹娱乐圈的日子 宗门全是美强惨,小师妹是真疯批 我一枪一剑杀穿大陆 哦豁!虐文炮灰不干了! 永恒大陆之命运 摊牌了,我爹是绝顶高手! 国运:拥有多重身份的我很合理吧 暗无 新人驾到 穿到八零,我自带锦鲤系统! 农夫是概念神?三叶草了解一下! 我的徒弟不对劲 重生在宝可梦,我的后台超硬 玄灵界都知道我柔弱可怜但能打 至尊战皇 译文欣赏:博伽瓦谭 穿成商户女摆烂,竟然还要逃难! 快穿之炮灰得偿所愿 大明:开局气疯朱元璋,死不登基 在下潘凤,字无双
龙血部队兵王狂龙因违反规定,被迫回到中海。本想低调做人,却偶遇美女总裁让自己睡了她,哪知道被卷入一场莫名的争斗,成为了她的贴身保镖。叶轻狂从此龙入花海,身边美女如云,但也麻烦不断读者群527212401...
穿越2006,喜获神级教练系统。帮助姚麦夺冠,圆无数中国球迷心中的冠军梦。当雷霆四少留守俄城,一个崭新的支平民球队,又如何把不可一世的勇士王朝掀翻下马。一次穿越,一段关于有完本作品重生之安东尼篮神体坛之召唤猛将,人品有保证,放心收藏阅读。阅群539855046,进群需晒学徒以上粉丝值。...
前世黑莲花白蓁被人在车上动了手脚车祸去世,穿越成了合欢宗女修白千羽,开启了和前世开后宫没什么不同的修仙之路。这篇算是某某宗女修炼手札的同人,但是是否玩游戏对看文没啥影响,文不会收费,大家放心追,女主是自设的无心海王型号。挂是挂了修真的名头,其实本文没有着重写女主初期修炼,主要还是着重她成为女王之后的故事。全文分三部分,第一二部分女主一边双修一边把以前给她使绊子的人给除了,手段稍微有点粗暴残忍,结果奇奇怪怪自称系统的东西出现了,告诉她,她已成为了这条世界线的主人,同时她设计把自己也拱成了修真大陆的无冕之王。第三部分开幕,无冕之王并不是这么好当的,一边要均衡各大势力,挑对自己有用的掌握在手里,一边要处理情人们的修罗场。。。。偶尔,系统还会给她出难题,让她暴打外来入侵者。然而白蓁(千羽)对此表示,挺好玩的,再来点。本文可能微微有点女尊倾向,女主床上小淫娃,床下真女王,没心没肺,快乐加倍。有疑似正宫,但是基本不会出现1v1的情况,女主这么强,配一个男的太亏了(啥?)。预警,女主从目前的伦理道德来讲,确实是渣女,而且吸溜子也没想洗。...
当被清纯校花火辣女杀手御姐总裁绝美女老师争相纠缠!贺轩很烦恼帅,是一种病!我是校花的未婚夫,天下美女的未婚夫!传奇杀手龙潜花都,却不想惹上一身风流情债!...
中原武林大地北有天芳谱七朵名花,南有美人图十二美人!武林之中,侠女成风,我一出世,无一落空。皇帝本多情,情深意更浓,武林有南北,皇帝就是我。...
...