手机浏览器扫描二维码访问
虽说数学悖论大多是一些让人越想越糊涂的逻辑思维游戏,但也有不少悖论来自于实实在在的数学问题。在缺乏现代数学工具的年代,这些反直觉的结论和看似不可调和的矛盾让数学家们百思不得其解,那些最难解决的悖论甚至为数学新分支的开创带来了足够的动机。不太为人熟知的Cramer悖论就是一个漂亮的例子。
在描述Cramer悖论之前,让我们先来考虑一个简单的情况。
两条直线交于一点。
反过来,过一点可以做两条不同的直线。
事实上,过一点可以做无数条直线。
确定一条直线需要两个点才够。
一切都很正常。
现在,考虑平面上的两条三次曲线。
由于将两个二元三次方程联立求解,最多可以得到9组不同的解,因此两条三次曲线最多有9个交点。另外,三次曲线的一般形式为
x^3+a·x^2·y+b·x·y^2+c·y^3+d·x^2+e·x·y+f·y^2+g·x+h·y+i=0
这里面一共有9个未知系数。
代入曲线上的9组不同的(x,y),我们就能得出9个方程,解出这9个未知系数,恢复出这个三次曲线的原貌。
也就是说,平面上的9个点唯一地确定了一个三次曲线。
这次貌似就出问题了:“两条三次曲线交于9个点”和“9个点唯一地确定一条三次曲线”怎么可能同时成立呢?
既然这9个点是两条三次曲线所共有的,那它们究竟会“唯一地”确定出哪条曲线呢?
在没有线性代数的年代,这是一个令人匪夷所思的问题。
Cramer和Euler是同一时代的两位大数学家。
他们曾就代数曲线问题有过不少信件交流。
上面这个问题就是1744年9月30日Cramer在给Euler的信中提出来的。
在信中,Cramer摆出了两个稍作思考便能看出显然成立的事实:一条三次曲线能用9个点唯一地确定下来,两条三次曲线可能产生出9个交点。
Cramer向Euler提出了自己的疑问:这两个结论怎么可能同时成立呢?
Euler心中的疑问不比Cramer的少。
接下来的几年里,他都在寻找这个矛盾产生的源头。
1748年,Euler发表了一篇题为Surunecontradictionapparentedansladoctrinedeslignescourbes(关于曲线规律中的一个明显的矛盾)的文章,尝试着解决这一难题。
我一枪一剑杀穿大陆 新人驾到 重生在宝可梦,我的后台超硬 永恒大陆之命运 在下潘凤,字无双 穿成商户女摆烂,竟然还要逃难! 宗门全是美强惨,小师妹是真疯批 快穿之炮灰得偿所愿 玄灵界都知道我柔弱可怜但能打 大明:开局气疯朱元璋,死不登基 国运:拥有多重身份的我很合理吧 暗无 摊牌了,我爹是绝顶高手! 我的徒弟不对劲 译文欣赏:博伽瓦谭 农夫是概念神?三叶草了解一下! 穿到八零,我自带锦鲤系统! 混迹娱乐圈的日子 至尊战皇 哦豁!虐文炮灰不干了!
龙血部队兵王狂龙因违反规定,被迫回到中海。本想低调做人,却偶遇美女总裁让自己睡了她,哪知道被卷入一场莫名的争斗,成为了她的贴身保镖。叶轻狂从此龙入花海,身边美女如云,但也麻烦不断读者群527212401...
穿越2006,喜获神级教练系统。帮助姚麦夺冠,圆无数中国球迷心中的冠军梦。当雷霆四少留守俄城,一个崭新的支平民球队,又如何把不可一世的勇士王朝掀翻下马。一次穿越,一段关于有完本作品重生之安东尼篮神体坛之召唤猛将,人品有保证,放心收藏阅读。阅群539855046,进群需晒学徒以上粉丝值。...
前世黑莲花白蓁被人在车上动了手脚车祸去世,穿越成了合欢宗女修白千羽,开启了和前世开后宫没什么不同的修仙之路。这篇算是某某宗女修炼手札的同人,但是是否玩游戏对看文没啥影响,文不会收费,大家放心追,女主是自设的无心海王型号。挂是挂了修真的名头,其实本文没有着重写女主初期修炼,主要还是着重她成为女王之后的故事。全文分三部分,第一二部分女主一边双修一边把以前给她使绊子的人给除了,手段稍微有点粗暴残忍,结果奇奇怪怪自称系统的东西出现了,告诉她,她已成为了这条世界线的主人,同时她设计把自己也拱成了修真大陆的无冕之王。第三部分开幕,无冕之王并不是这么好当的,一边要均衡各大势力,挑对自己有用的掌握在手里,一边要处理情人们的修罗场。。。。偶尔,系统还会给她出难题,让她暴打外来入侵者。然而白蓁(千羽)对此表示,挺好玩的,再来点。本文可能微微有点女尊倾向,女主床上小淫娃,床下真女王,没心没肺,快乐加倍。有疑似正宫,但是基本不会出现1v1的情况,女主这么强,配一个男的太亏了(啥?)。预警,女主从目前的伦理道德来讲,确实是渣女,而且吸溜子也没想洗。...
当被清纯校花火辣女杀手御姐总裁绝美女老师争相纠缠!贺轩很烦恼帅,是一种病!我是校花的未婚夫,天下美女的未婚夫!传奇杀手龙潜花都,却不想惹上一身风流情债!...
中原武林大地北有天芳谱七朵名花,南有美人图十二美人!武林之中,侠女成风,我一出世,无一落空。皇帝本多情,情深意更浓,武林有南北,皇帝就是我。...
...